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Abstract 

In this Paper we show how to use an on-line algorithm based on a multi-process- 
Kalman-filterextending ideas described in Whittaker and Frühwirth-Sehnatter 
(J. Whittaker, Frühwirth-Sehnatter, Appl. Stat. 43 (4) (1994)) - to detect sequential 
Change-Points in noisy time series. We focus on types of Change-Points typically arising 
in biomedical Signals, i.e. jumps or drifts in nonstationary time series possibly corrupted 
by embedded outliers. The algorithm has been implemented in a program written in 
Matlab 5.0 and was tested using vital Parameters recorded during surgical procedures 
performed at the University Hospital of the Technical University of Munich, Klinikum 
Rechts der Isar, Munich. 0 1998 Elsevier Science Inc. All rights reserved. 

1. Introduction 

On-line monitoring of time series is becoming increasingly important in 
different areas of application such as medicine, biometry and finance. In 
medicine, on-line monitoring of patients after kidney transplantation [ 1] is a 
prominent example. In finance, fast and reliable recognition of changes in level 
and trend of intra-daily stock market prices is of obvious interest for ordering 
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and purchasing. In this project, we currently consider monitoring of surgical 
data like heart rate, blood pressure and oxygenation. 

Change-Points in such time series have to be detected in real time as new 
observations come in, usually in short time intervals. Retrospective detection 
of Change-Points, after the whole batch of observations has been recorded, is 
nice but useless in monitoring patients during an Operation. 

There are various statistical approaches, particularly in statistical quality 
control, which are conceivable for on-line detection of Change-Points in time 
series. Recently dynamic models or state space models have been discussed for 
autocorrelated data, and they seem particularly well suited for our purposes. 
“Filtering” was historically developed exactly for on-line estimation of the 
“state” of some System. Our approach is based on an extension of the so-called 
multi-process Kalman filter for Change-Point detection [2]. It turns out, how- 
ever, that some important issues for an adequate and reliable application have 
to be considered, in particular the (appropriate) handling of outliers and, as a 
central Point, adaptive on-line estimation of control- or hyper-Parameters. In 
this Paper we describe a filter model that has these features and tan be im- 
plemented in such a way that it is useful for real time applications with high 
sampling rates. 

Recently, Simulation based methods for estimation of non-Gaussian dy- 
namic models have been proposed that may also be adapted and generalized 
for the purpose of Change-Point detection. Most of them solve the smoothing 
Problem, but very recently some proposals have been made that could also be 
useful for filtering and, thus, for on-line monitoring [4-61. Whether or not these 
approaches provide a useful alternative to our development requires a careful 
comparison in the future and is beyond the scope of this Paper. 

2. The dynamic linear model 

Throughout this Paper we will use the notation as in [3]. 

2.1. Definition of the dynamic linear model 

Let & E [w be the Observation at time t E [0, 1 . . . T}. Then for each time t, 
the dynamic linear model is defined by 

Observation equation: K = Ce, + ut, vt N N(0, K), 
System equation: o1 = G,B,_] + wtr wt N N(0, IQ, 

where F, E UV, Gt E 5%““” are known design matrices describing the determin- 
istic part of the Observation process and of the System evolution. Both pro- 
cesses are disturbed by the Gaussian noise terms o(t) E Iw (Observation 
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variance) and w(t) E R” (evolution variance), which are assumed to be mutu- 
ally independent with variances r: E R, Fl$ E R”““. 

The model is initialized by a known Prior for the initial state vector B0 E IR”, 
usually taken to be 

wheregenerallyD,={Y,,...,Yo}={~,Dt_,} p re resents the information set at 
time t, such that DO represents the initial information. 

The dynamic linear model with design matrices F,, G, and variances V;, yt; 
may symbolically be written as M, = {F, G, V, FV},. 

2.2. Estimation of the state vector 8, 

The following updating equations are used in estimating 0, (see also [3]): 
(a) Given posterior information at time t - 1 

(e,-lto,-l) N N(w,,C,-~) 

we arrive at the following. 
(b) Prior at time t 

(op-d N Wal,&), 

where a, = Glm,_l R, = G,C,_,Gi + yt;. Next we tan forecast K, by using in- 
formation up to time t - 1. 

(c) One-step forecast 

(W-1 1 - NL, et), 

where ft = Ft’al, Q, = FIR,F, + K. Eventually we obtain the following. 
(d) Posterior at time t 

wv - N(m, C,), 

where m, = a, + Ale,, C, = R, - AtA:Qt with A, = R,F,Q;‘. e, = K -fi. 

3. A multi-process model for the on-line monitoring Problem 

Combinations of different filters are called multi-process models. Let d be 
some index set and for tl E JZZ let M,(U) be the model corresponding to a (for 
some F, G, V, W depending on t and a). 

In the simplest case there is some fixed (though maybe unknown) c( such that 
the model M,(a) holds for all t, and this is what turns out to be general enough 
to handle the on-line Problem. 
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For the estimation of tx we use Bayes theory. Given an initial Prior 
p(al&,), inferences about CI tan be drawn sequentially by p(crlD,) rxp (cilDI_,) 
P(Ytla,&,). 

Our multi-process model for the on-line monitoring Problem - including 
multiple Change-Points - is based on the dynamic Change-Point model devel- 
oped in [2], covering situations with at most one Change-Point. In the following 
we give a brief description of the latter model. 

3.1. The dynamic Change-Point model 

The structural component model of [2] describes a System without a change- 
Point by a simple random walk. Change-Points are incorporated by a “switch”, 
which adds at some fixed but unknown time z a (possibly noisy) drift to the 
System equation. Thus for each z E (0, 1, . , T} the Observation and System 
equations are: 

Observation equation: K = pt -t ut, u, N N(0, a;), 

System equation: K = pLIP, + zj’)&, + wirr wir N N(0, f$, 

B, = 81-1 + W2rr w21 N NO, aß), 

where zi” is an indicator variable with 

(7) _ O t < z, 
Zf - 

{ 1 t>T. 

We shall use the following notation: the “0-filter” refers to a filter with zi” = 0 
and the “1-filter” refers to a filter with 2:‘) = 1. 

EveryzE{O,l,... , T} defines a different model. The collection of all these 
Single-process models labeled by z is called the multi-process model M,(z). In 
matrix notation: 

r,= [l O]&+z+, 

with 

Var(v,) =: I$, Var(w,) =: q. 

We discuss the Problem of choosing 6 and K in Section 4.2. The updating 
equations given a Change-Point z = j are described in Section 2.2 
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3.2. The estimation of Change-Points 

The posterior distributions of the Change-Points P(z = j/Dl) j = [l, . . . , T], 
tan be calculated using a Bayes approach from Bayes with: 

P(T = jlDI) 0; P(KID,_1, z = j)P(z = jlD,_r). 

These probabilities must be initialized. If n denotes the probability that a 
Change-Point occurs until time T, a reasonable initial Prior is the uniform Prior: 

p(z = jlDo) = f , j = 1 . . . T. 

For the estimation of z it is only necessary to consider models up to time t, 
since all conditional models with z > t + 1 are identical: 

P(Y,ID,_,,z=j)=P(Y,ID,_l,z=t+l), j>t+l. 

Hence the posterior distribution of the Change-Point z at time t is given by 

P(T = jlDt) = 
{ 

c,@(y~f;J,C?i) .P(r =jP-11, j<t, 
c,~oit;f:+‘,~+‘).P(z=jlD,-l), t-cj<T, 

P(z > TID,) = c,qj,;Jf+‘, Qy’) P(z > TI&,), 

where JI = E( K ID,_, , z = j) and 0 = Var( Kl&, , z = j) are the mean and 
variance of the one-Step forecast density (See Section 2) and @ is the density of 
the normal distribution, ct being the normalization constant. 

The dynamic linear Change-Point model seems to be an appropriate model, 
which allows to detect on-line deviations from an assumed course of a moni- 
tored variable. But there exist still some unsolved Problems: 

Outliers tan have an important influence on the probability of a change- 
Point. 
Long Observation periods entail the need for handling many models simulta- 
neously such that the algorithm becomes too slow for real time applications. 
The original model only allows one to detect at most one Change-Point dur- 
ing the Observation period. 
The variances Y; and yt; are in many practically important cases unknown. 

The next chapter Shows how these Problems tan be solved. 

4. Towards an on-line monitoring alert System 

4.1. Introduction of a time window for the l-jilters 

The computational time increases rapidly with the increasing number of 
l-filters to be processed such that the Speed may easily drop below the limit for 
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real time applications. To overcome this Problem, we introduce a window 
[t - b, t] for these 1-filters, with some positive b depending on the computa- 
tional power and the specific Problem. Then the probabilities for the change- 
Points are 

c&,Yf;fi’> @, . P(z = jl&l). t-b<j<t, 

P(z = jlZA) = c,@(y,;f:+’ ,a+‘) .P(z = jj&l), t <j< T, 

0, j<t-b, 

P(z > TIDt) = c,@(ygf:+‘, Q;“) . P(z > TI&,). 

Only the 0-jilter and the t - b + 1 1-filters are considered in the calculations 
of the Change-Point probabilities. One obvious advantage is that the time 
needed to perform the various calculations stays more or less constant, espe- 
cially not growing with time. An additional advantage is that the model is now 
able to deal with more than one Change-Point. Since a Change-Point before time 
t - b is no longer respected, we estimate the posterior distribution of the actual 
Change-Point using information only from within this time window. However, 
the window t - b is dynamic. One 1-filter is added for the new Observation and 
in the same moment we drop the 1-filter for Observation t - 6. Hence, in 
moving the window over time we are able to detect sequential Change-Points. 

4.2. Hierarchical multi-process models 

Let P(Mj*)ID,) be the probability that the model M,(“‘, for some CI E &‘, holds 
at time t. Then we define a hierarchical model by the probability 

P(@“), Mp pt) = P(Mp lp4/~)) D,)P(Mr(ß) ID,), 

where ß E g, and d, 69 are disjoint Parameter Sets. 
If one is interested in marginal probabilities one may calculate them via 

This definition should not be confused with a multi-process model of class 11, in 
which one will not distinguish between d and 93. A hierarchical model is the 
combination of two or more multi-process models of class 1. So one is able to 
follow a decision tree within the set of different filters. We will use it to build an 
estimation procedure for the unknown F$ and K, as well as for the outlier 
detection. 

Before we propose the estimation procedures for the unknown variances, we 
discuss some basic considerations. Up to now we have not distinguished be- 
tween different filters and their variances. However, this will become important 
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when we are going to estimate these variances on-line. The fundamental ap- 
proach to the on-line monitoring Problem using the dynamic linear change- 
Point model is that the new Observation x is explained by two types of models 
(the 0- and l-filters). A Change-Point is detected when the 1-filters are better in 
predicting yt than the 0-filter. 

Since the System equations of the 0- and 1-filters are different 
(K = &I + wjo) for the 0-filter and pr = pLI_, + &_, + wi” for the l-filters) one 
will have different evolution variances F$‘), I#$“, z = 1,. . . , t. The only differ- 
ence between 0- and 1-filters is the slope Parameter /?. Hence, in adding a slope 
Parameter to the System equation a part of the evolution variance estimated for 
the 0-filter, is now explained by the slope itself, and therefore Ft;(T) < M$‘). 
However, the Observation variance Y;, which has the interpretation of mea- 
surement error, is identical for both models, because the Observation equations 
are identical. 

These considerations lead to the following estimation concept. Since we are 
not able to find a analytic estimation procedure in terms of a Single multi- 
process filter, to estimate 6 and W; simultaneously we have to estimate these 
variances separately from the estimation of a Change-Point. Therefore we will 
introduce, for estimation of the unknown variances, a new multi-process filter 
consisting of the 0-filter and the 1-filter (with t = 1). This leads to what we cal1 
a hierarchical on-line estimation procedure. 

4.3. On-line estimation of the unknown variance Y; 

To estimate the unknown observational variance 6 we adapted a conjugate 
sequential updating procedure described in West, Harrison (1989, 118lf). Since 
C: becomes now a random quantity the normal distribution changes into a t- 
distribution and we will obtain the following System: 

Observation equation: Yr = F’O, + ut, 0, N N(0, K), 

System equation: Br = @(I-r + w,, w, - Tnl_, (0, ct;),j E {T + 1, l}, 

where T,,_, (p, c?) denotes the noncentral T-distribution with mean p, variance 
CI* and n,ml degrees of freedom. The expression j E {T + 1, 1) indicates two 
filters, one for the 0-filter and one for the 1-filter, that started from the be- 
ginning. The updating equations will now take the form: 

(a) Posterior at t - 1: (O,_, lD,_, ,j) N T,,+, (m,_,., c,_,). 
(b) Prior at t: (0,lD,-,,j) N c,-,(a,,R,),d = G$z_,,R! = GC:_,Gf+ %. 
(c) one-step forecast: (Y,(D,_r , j) N T,,+) v;, Q), ft = F’d, & = S;_, + F’R:F. 
(d) Posterior at t: (ellDf,j) 
A$4iJQJ, Si = dt/n,, 

- Tnt+, (~1, C,), m: = a: + &, C: = S:/S;$ [Rj- 
where n, = ntel + l,d, = dt-, +Sf_,d2/a,A, = RjF/& 

andjE{T+l,l}. 
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Under the assumption that the estimated variances K(O) and P$‘=‘) are now 
known quantities, we tan combine the two filters in a multi-process model and 
use this to get an estimate of Y; simultaneously.Using Bayes we get 

and we tan get an estimate of 6 by 

As initial probabilities P( K’iD o one tan use the probabilities n, 1 - rc, which ) 
were used to initialize PCJDo) in the Change-Point estimation procedure. The 
Single estimates of Y;’ will be passed to the hierarchical Change-Point model. 

4.4. On-Eine estimation of the unknown variance ct; 

Similar to Section 4.3 we will build an estimation procedure to calculate Yy;. 
In a first step we transform the Problem of estimating II$ to a Problem where we 
have to estimate a discounted variance. As proposed by [3] we introduce a 
discounting factor 6,_,, with 0 < 6,_, < 1. By definition we tan set 

K = P,(l - kl)/&, 

with 

Pt = G,C,_,G;. 

One advantage is now that in contrast to K, 6,_, is scale free. Furthermore 6,_, 
is related in the limit to the Signal to noise ratio r = K/K = (1 - ~5_,)~/6,_, . In 
the literature values like 6 = 0.7 or 0.9 are Chosen to be fixed and the usual 
updating equations are used to estimate the state vector 8,. Hence, a possible 
strategy could be to analyze several data sets with defined Change-Points and to 
look for the best value of 6. But this would not be an on-line estimation of the 
evolution variance FI$, Another possibility is to estimate the unknown dis- 
counting factor 6,-, similarly to the Observation variance K. Our proposal is to 
do the following: 

As mentioned at the beginning of this chapter, we need a 6,_, for the 0-filter 
and the 1-filter. So we have to build two different multi-process models. First 
letj~{T+l,l}.Then: 

(a) choose a discrete set [S:_, , df_, , . . . , Sf_,] of values for 6,_, (k appropriately 
Chosen); 
(b) calculate at each step the probabilities of 6,_, using 

P(#_,I&,) ~P(Ytl~_,,~l-z,j)P(~_,l~1-2,j), 

One may estimate & using 
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i=l 

It seems to be natura1 to use the uniform distribution P(di(Do) = l/k, i 
= )...) 1 k for the initial probabilities. This method appears to be a good es- 
timation strategy for the unknown q:,. Once again the estimated Parameters 
are passed to the hierarchical Change-Point model. 

4.5. Ou tliers 

To detect outliers we use the ideas af [l]. An outlier tan be interpreted as a 
sudden perturbation of the Observation equation. To include this possibility we 
could enlarge the multi-process model by an extra filter for outliers (which we 
cal1 “N-filter”), which is exactly the 0-filter with an enlarged Observation 
variance. Since, Y; and & are estimated on-line this will not work. Instead of 
including the extra N-filter in the Change-Point model, we introduce an extra 
multi-process model for outliers. This model will become the first level of our 
hierarchical multi-process model. Let 

M,(K): r, = F’8, + z+, vf N N(0, KV), 

0, = G(T+l)B,_l + wt f > WI N WO! R), 

where K is Chosen sufficiently large, say K = 100. Now we may estimate the 
probability of an outlier by 

P(OutlierlD,) 0: P(Y,~Outlier,D,_l)P(Outlier~D,_l). 

4.6. Initialization 

We now show how the Prior distributions of the state vectors should be 
specified. We initialize the 0-filter and 1-filter similar to [2] with a data driven 
Prior. The variances Ct) follow hereby a diffuse Prior. 

The 0-filter (B&, T + 1) - N(mp’), Cr’)) is initialized by 

mr’) = (J’, , 0)’ and Cr’) = (“i” ;). 
Prior information of the 1 -filters (0, (DO, r < t) N N(mt “), C’t ’ “) is recursively 
defined by 

$=‘) = (&=y, r,_, _ *yy, 

c(=‘) = ( 
&=t-1) _$=t-1) 

0 _C(T=r-I) . 

0 
c(‘=l-l) + v + #/ 

0 t f ) 
Furthermore, we have to specify starting values for the variances K, K and we 
have to choose a discrete set for the discounting factor 6. Since we are going to 
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estimate all Parameters on-line we need a good guess for the Signal to noise 
ratio Y of the underlying process. Otherwise the estimation procedure will not 
converge to the true values. 

For the approximation of Y we will use the first 2k observations (Chose k 
appropriately) and we define the following quantities: 

a=Var(x-K-I), i= l,..., 2k, 

b=Var(Y,+Y2k_r+l)r i=l,... ,k. 
Then 

‘= 2(2k:;)b-cz’ 
With this we are able to choose V and W such that r = W/V. Furthermore, we 
tan now choose a discrete set for 6. Since Y = (1 - ~3)~/6 it is convenient to 

Fig. 1. We see from the figure, that at Observation 120 an alert is given. This coincides with the 
beginning of the first skin tut. At 250 we have introduced an outher, which was detected by the N- 
filter. At 285 the Operation Starts. Since the Patient reacted to this, the anesthesiologist had to 
intervene. The weak Change-Point at 506 was in this period of external stabilization. From 540 to 
752 we have a stable Phase. At 752 one observes a weak Change-Point. This marks the end of the 
Operation and the anesthesiologist initiated the wakeup Phase. At 821 the Patient awoke. 
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choose a discrete interval of 6 about r. This interval tan then be updated as new 
observations are made using the same approximation as before. 

5. Example 

The following data (Fig. 1) are the ECG measurements, taken every five sec- 
onds, from a Patient undergoing a skin transplantation. Monitoring started when 
the first Steps in preparing the Patient were finished and anesthesia was completed. 

The first window Shows the ECG measurements with the filtered values of 
the 0-filter. The second window displays the estimated cumulative probability 
that a Change-Point has occurred within the Observation window. Furthermore 
we display the probability of an outlier at the current timepoint. 

6. Conclusions 

We have presented an algorithm based on multi-process Kalman filters, 
which allows one to estimate the probability that a Change-Point has occurred 
in a noisy time series. The algorithm is stable against outliers, adaptive and fast 
enough for on-line applications. In situations where one has good control of 
the System and Observation equation, the Signal to noise ratio, independence 
gaussian distribution etc., the weil-known optimality results for the Kalman- 
filter apply. We shall discuss extensions, alternative algorithms and detailed 
methods for Validation elsewhere. 
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